If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-44x+99=0
a = 4; b = -44; c = +99;
Δ = b2-4ac
Δ = -442-4·4·99
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-4\sqrt{22}}{2*4}=\frac{44-4\sqrt{22}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+4\sqrt{22}}{2*4}=\frac{44+4\sqrt{22}}{8} $
| 4g–10g–6=-4g+6 | | X-101+8x=43 | | (-4e+9)-3e+2)=0 | | 2a-4=15+a | | 3x+x-41=19 | | 4c-0,5=3,5 | | x/8+x/5=26 | | 1/2x-2/3+x=7/6 | | -6+3m=42 | | 2(5x-20)-(15x+8x)=7 | | 6x2=6 | | 6x+3=-11 | | 2n-5n=-3n | | -109+3x+4x=45 | | 2.85z-8.263=-3.76 | | 16=x/100•40 | | x^2+21x+48=0 | | n^2-2n-32=0 | | (x+4)/2=4-(x+2)/3 | | (3x+4)^2=0 | | -5(2x-66)=4(x+11) | | x+4/2=4-x+2/3 | | 7x/1*4/7=10/x*7x/1 | | 2.81z-8.0893=-3.79 | | (n+2)(n-4)=24 | | x÷2-5=10 | | 4x-1=-3x+7 | | 6x+5x+2+9=6x+4+4x | | 4(-2)+2y=12 | | 2x^2=3x-16x^2 | | 11w-5w=12 | | 4x-1=-3x-7 |